skip to main content


Search for: All records

Creators/Authors contains: "Liu, Yiming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Geometric intersection algorithms are fundamental in spatial analysis in Geographic Information System (GIS). Applying high performance computing to perform geometric intersection on huge amount of spatial data to get real-time results is necessary. Given two input geometries (polygon or polyline) of a candidate pair, we introduce a new two-step geospatial filter that first creates sketches of the geometries and uses it to detect workload and then refines the sketches by the common areas of sketches to decrease the overall computations in the refine phase. We call this filter PolySketch-based CMBR (PSCMBR) filter. We show the application of this filter in speeding-up line segment intersections (LSI) reporting task that is a basic computation in a variety of geospatial applications like polygon overlay and spatial join. We also developed a parallel PolySketch-based PNP filter to perform PNP tests on GPU which reduces computational workload in PNP tests. Finally, we integrated these new filters to the hierarchical filter and refinement (HiFiRe) system to solve geometric intersection problem. We have implemented the new filter and refine system on GPU using CUDA. The new filters introduced in this paper reduce more computational workload when compared to existing filters. As a result, we get on average 7.96X speedup compared to our prior version of HiFiRe system. 
    more » « less
  2. Abstract

    Current nucleic acid delivery methods have not achieved efficient, non‐toxic delivery of miRNAs with tumor‐specific selectivity. In this study, a new delivery system based on light‐inducible gold–silver–gold, core–shell–shell (CSS) nanoparticles is presented. This system delivers small nucleic acid therapeutics with precise spatiotemporal control, demonstrating the potential for achieving tumor‐specific selectivity and efficient delivery of miRNA mimics. The light‐inducible particles leverage the photothermal heating of metal nanoparticles due to the local surface plasmonic resonance for controlled chemical cleavage and release of the miRNA mimic payload. The CSS morphology and composition result in a plasmonic resonance within the near‐infrared (NIR) region of the light spectrum. Through this method, exogenous miR‐34a‐5p mimics are effectively delivered to human squamous cell carcinoma TE10 cells, leading to apoptosis induction without adverse effects on untransformed keratinocytes in vitro. The CSS nanoparticle delivery system is tested in vivo in Foxn1nu athymic nude mice with bilateral human esophageal TE10 cancer cells xenografts. These experiments reveal that this CSS nanoparticle conjugates, when systemically administered, followed by 850 nm light emitting diode irradiation at the tumor site, 6 h post‐injection, produce a significant and sustained reduction in tumor volume, exceeding 87% in less than 72 h.

     
    more » « less
  3. In this paper, we introduce our hierarchical filter and refinement technique that we have developed for parallel geometric intersection operations involving large polygons and polylines. The inputs are two layers of large polygonal datasets and the computations are spatial intersection on a pair of cross-layer polygons. These intersections are the compute-intensive spatial data analytic kernels in spatial join and map overlay computations. We have extended the classical filter and refine algorithms using PolySketch Filter to improve the performance of geospatial computations. In addition to filtering polygons by their Minimum Bounding Rectangle (MBR), our hierarchical approach explores further filtering using tiles (smaller MBRs) to increase the effectiveness of filtering and decrease the computational workload in the refinement phase. We have implemented this filter and refine system on CPU and GPU by using OpenMP and OpenACC. After using R-tree, on average, our filter technique can still discard 69% of polygon pairs which do not have segment intersection points. PolySketch filter reduces on average 99.77% of the workload of finding line segment intersections. PNP based task reduction and Striping algorithms filter out on average 95.84% of the workload of Point-in-Polygon tests. Our CPU-GPU system performs spatial join on two shapefiles, namely USA Water Bodies and USA Block Group Boundaries with 683K polygons in about 10 seconds using NVidia Titan V and Titan Xp GPU. 
    more » « less
  4. null (Ed.)
  5. Polarization of optical fields is a crucial degree of freedom in the all-optical analogue of electromagnetically induced transparency (EIT). However, the physical origins of EIT and polarization-induced phenomena have not been well distinguished, which can lead to confusion in associated applications such as slow light and optical/quantum storage. Here we study the polarization effects in various optical EIT systems. We find that a polarization mismatch between whispering gallery modes in two indirectly coupled resonators can induce a narrow transparency window in the transmission spectrum resembling the EIT lineshape. However, such polarization-induced transparency (PIT) is distinct from EIT: It originates from strong polarization rotation effects and shows a unidirectional feature. The coexistence of PIT and EIT provides additional routes for the manipulation of light flow in optical resonator systems.

     
    more » « less
  6. Abstract

    The extensive fast seismic anomalies in the mantle transition zone beneath East Asia are often interpreted as stagnant Pacific slabs, and a reason for the widespread tectonics since the Mesozoic. Previous hypotheses for their formation mostly emphasize vertical resistances to slab penetration or trench retreat. In this study, we investigate the origin of these stagnant slabs using global‐scale thermal‐chemical models with data‐assimilation. We find that subduction of the Izanagi‐Pacific mid‐ocean ridge marked the transition of mantle flow beneath western Pacific from being surface‐driven Couette‐type flow to pressure‐driven Poiseuille‐type flow, a result previously unrealized. This Cenozoic westward mantle wind driven by the pressure gradient independently explains seismic anisotropy in the region. We conclude that the mantle wind is the dominant mechanism for the formation of stagnant slabs by advecting them westward while the pressure gradient holds them in the transition zone.

     
    more » « less